
AD-A195 676 A DYINIC SCHEDULER FOR A COMPUTER RIMD PROTYPING /
a SYSTEM() NAVAL POSTGADUATE SCHOOL MONTEREY CA
I S L EATON NOA N

UNCLASSIEDDFV' G 2/5 NL

momhhhmmmhhhl

1.66.

11111= 1.6*

MlrrnCOPv RrZ<'IT(NA TEST CHART

41 % %3

%5

Zl"

oo r J loop

O1FILE COPI

NAVAL POSTGRADUATE SCHOOL
Monterey California

00

"DTIC
ELECTS ?,

JUN 2 21988"'

THESIS
' S: .,

A DYNAMIC SCHEDULER FOR A COMPUTER
AIDED PROTYPING SYSTEM

by

Susan L. Eaton

March 19S8

Thesis Advisor Luqi

Approved for public release; distribution is unlimited.

-S

Unclassified
security classification of this page

REPORT DJOCUMENTATION PAkGE
la Report Security Classification Unclassified lb Restrictive Mjarkings

ja Securitv Classification Authoriiy 3 Distribution Availability of Report

2b, Declassification Downezradina Schedule Approvedl for public release; distribution is unlimited.
-1 Performning Organization Report Number(s) 5 Monitoring Organizition Report Numberis)

1Name of Performing Organization 6b Office Symbol 7a Name of Monitoring Organization
Naval Postgraduate School (if[applicable) 32 Naval Postgraduate School
6c Address (city, state, and ZIP code) 7b Address (city, state, and ZIP code)
Mlonterev. CA 93943-5000 Monterey, CA 93943-5000
Sa Name of Funding Sponsoring Organization Sb Office Symbol 9 Procurement Instrument Identification Numiber

1 ifapplicable) _______________________________________

Sc Address (dry,. state, and ZIP code) 10 Source of Funding Numbers

IPrngram Element No IProtect No Irask No IWork U~nit A\ccession No

I Title (include securirt classitication) A DY\AMIvlC SCHEDULER FOR A COMPUTER AIDED PROTOTYPING SYSTEM
12 Personal *\uttior(s) Susan L. Eaton
13 a T %pe of Report 13 b Time Covered W4 Date of Report (year. month, cday) 15 Page Count
Master's Thesis T Fo m To Mlarch 1988 160

j 16 Supplementary Notation The views expressed in this thesis are those of the author and do not reflect tile official policy or po-
sition of the Department of Defense or the U.S. Government.
17 Cosaio Codes 18 Subject Terms (continue on reverse i/ necessar Y and identify by block number)
Field Group Subgroup rapid prototyping, dynamic scheduling, ada

19A ?c cominue on reverse if necessary and identify by block number)
Current software development mnethodologies ha, proven to be ineffective for meeting the rising demand for fist pro-

duction of reliable software for hard real-time computer systems. A computcr-aided, rapid prototypmng system (CAPS))dsed
on a Prototype System Description Language (PS DL) and a set of software tools including an Execution Support System
(ESS), has been proposed by other research and provides a promising and cost effective alternative to the traditional devel-
opsnent life cycle of these systems.

This study proposes a four function design for the dynamic scheduler of the CAPS ESS. This desigi includes a method
for invoking processes for the ESS static scheduler aad translator, a scheduling algorithm for the scheduLng of the prototype's
non-time critical processes, and a method for error and interrupt handling during prototype execution.,

"I Dsrbto viaiit fbtat2 htat euiyCasfcto

DDf [FiORMto Availbilit ofA8 Abstactn a 21 ustUnt echurityd Classificsifcaioationsag

All other editions are obsolete __________________

Un~classified

Approved for public release; distribution is unlimited.

A Dynamic Scheduler for A- Computer Aided Prototyping System

by v

Susan L. Eaton

Lieutenant, ["nilted States Navy
B.A., Towson State University, 1980

Submritted in partial fulfllmrent of the

requirements for the degree of

MASTER OF SCIENCE [N TELECO-MM NICATIO>4S SYSTEMIS
NIANA G EM EN T

firor the

NAVAL POSTGRADUATE SCHOOL

March 1988

Author: <~

Susan L. Eaton

Aprvdby: -

LJqi, Thesis Advisor

BryA. Frew, Second Reader

D/Bar rteScec

Frem er .Actiii,

Dea - Iif- maton ad 'llcvScince

,Wo II p

oI

ABSTRACT

Current software development methodologies have proven to be ineffective for

meeting the rising demand for fast production of reliable software for hard real-time

computer systems. A computer-aided, rapid prototyping system (CAPS) based on a %

Prototype System Description Language (PSDL) and a set of software tools including
an Execution Support System (ESS), has been proposed by other researoh and pfovidc

a promising and cost effective alternative to the traditional development life cycle of

these systems.

This study proposes a four function design for the dynamic scheduler of the CAPS

ESS. This design includes a method for invoking processes for the ESS static scheduler

and translator, a scheduling algorithm for the scheduling of the prototype's non-tilic

critical processes, and a method for error and interrupt handling during prototype exe-

cution.

&

Acce6s'ion For
NTIS _'.A&I

Sr, 7Tc, ' r.,i- :

i au., It .I.1t~v Ccc t 9 s

iii -".'---I ,,

P -t lkr~I).i~y c~,]
' " , ''7 O, .':o" '",' ,'-" N." ;"v7,v/, • ' '-".''.".", " "" %€',. .. '",''%''- ';'.i'-.'4';",%:z"*

' " ." " .'-I

p

TABLE OF CONTENTS

1. IN TRO D U CTIO N .. I
A . BA CK G RO U N D .. I

B. O BJEC T IV ES ... 7
C. BENEFITS OF THIS STUDY 9
D . O VERV IEW .. 10

II. BACKGROUND AND DEVELOPMENT OF SCHEDULING ALGO-

RITHMS ... 11
A. THE SC.HI.DULING PROBLEM II
B. SCHEDULING METHODS 12

I. DECOMPOSITION STRATEGIES 12

2. THREE PROCESS MODELS 14
3. EARLIEST DEADLINE-PREDECESSOR PRIORITY ALGORITIHEM 17

4. THE RATE MONOTONIC SCHEDULING ALGORITI-M 17

5. "NEXT-FIF-M 19
6. A TIME-DRIVEN SCIIEDULING MODEL 19
7. DYNAMIC SCHEDULING OF TASK GROUPS 21

8. A RECEIVER-INITITATED SCHIEDULING STRATEGY 22

9. APPLICATIONS OF TIIESE METIIODS FOR THE CAPS SCI IED-

ULERS .. 22

III. THE CAPS DYNAMIC SCHEDULER............................ 23

A. SCHEDULING FUNCTIONS 23
1. THE RUN-TIME EXECUTIVE FUNCTION 23

2. TIE CREATE NON-TIME CRITICAL OPIERTFOR SCIIEI)MLE

FUNCTION ... 25
3. THE TERMINATE PROTOTYPE FUNCTION 2
4. TiE HANDLE INTERRUPTS FUNCTION 28

B. TIIE USE OF ADA ..

IV . SU M M A R Y .. 31

i

,7

A. THE QUESTIONS ANSWERED 31
B. TIlE PROBLEMS THAT REMAIN 31

C. CAPS: AN EFFECTIVE DEVELOPMENT ALTERNATIVE 32
D . CO N C LU SIO N .. 33

APPENDIX A. A PSDL PROTOTYPE 34

APPENDIX B. PSDL GRAMMAR SUMMARY 38

APPENDIX C. DYNAMIC SCHEDULER FUNCTIONS 41

APPENDIX D. PSEUDO-CODE FOR AN ADA PROGRAM. 43

LIST OF REFERENCES ... 49

INITIAL DISTRIBUTION LIST 52

"'S

.p
°S ,

LIST OF FIGURES

Figure 1. PROCESS OF REQUIREMENTS DETERMINATION.............

Figure 2. CAPS Architecture..6

Figure 3. COMPONENTS OF THE CAPS EXECUTION SUPPORT SYSTEM . S

Figure 4. DYNAM%,IC SCH-EDULER FUNCTIONS...................... 24

Figure 5. STATIC SCHEDULER BLOCKING METH-OD.................2 "6

Figure 6. CREATION AND EXECUTION OF THE DYNAMIC SCH-EDULE 27

ivi

I. INTRODUCTION

A. BACKGROUND
Increasing demand for rapid development of high quality software has risen to the

point that significant improvements must ,e made to current software development

methodologies. This is because these methods do not produce software fast enough, nor
do they result in software products of sufficient quality. This is particularly true for

development of software for hard real-time systems. A hard ieal-time system is one in

which tasks have deadlines that must be met, otherwise severe consequences may result.

Many Command, Control and Communications (C3) Systems are examples of such

systems.

Production of hard real-time systems that support communications requirements

within the area of C3 are particularly challenging to software developers. One reason

for this is that communications systems are usually subject to very stringent real-time

requirements. For example, receiving and processing data from remote sensors may
need to occur in the micro or millisecond timeframe. Another reason, often inherent to

defense systems, is that communications software (as well as other types of software)

must be interoperable across a wide variety of hardware and software environments.

This is exemplified by the fact that equipment from multiple vendors (utilizing proprie-
tary or incompatible protocols), and obsolete, poorly documented systems must function

together in support of various operational requirements. Furthermore, maintenance
considerations across these diverse environments introduce an additional level of dilfi-

culty for software developers because the interoperability of these systems nmust be

maintained when inconsistencies are reconciled or when upgrades are applied.

One method for meeting these challenges, and the increased demand for rapid sys-
tem development, is rapid prototyping. A prototype is an executable model or pilot

version of the intended system which is used as an aid in analysis and design rather than

as production software to be delivered to the user. Rapid prototyping is the con-

struction activity which creates this executable model. This technique has been found
to be ellective for clarifying user requirements and eliminating the lare amount of -,

wasted effort currently spent on developing software to meet incorrect or inappropriate

requirements in traditional softwar if,' cycles. [Ref' 1: p. 11

Rapid construction of executable prototypes for hard real-time systems would be

greatly enhanced through the use of a computer-aided design systen. One such system

proposed by [Ref. 2] and [Ref. 31 is the Computer Aided Prototyping System (CAPS).

CAPS presents an alternative to the traditional software development lilb-cvcle and is

based on a Prototype System Description Language (PSDL) and a prototyping meth-

odology.

The CAPS prototyping methodology, as illustrated by Figure I on page 3 is an it-

erative process. The software developer constructs a prototype based on user require-

ments. then the developer and user examine the executable prototype together. During

this examination, adjustments are made and the prototype is modified until both the user

and developer agree that the user's requirements will be met.

Prototype System Description Languasr (PSDL) was developed in conjunction with

this methodology because a language for supporting rapid prototyping of large real-time

systems has different requirements from general purpose programming or specification

languages. PSDL contains several unique features which meet these requirements. For

example:

PSDL is based on a simple computational model which limits and exposes the inter-
action between system modules thus promoting effective modularization of the pro-
totype.

PSDL contaio basic data, control, and function abstractiu, s which allow specifica-
tion and representation of the intended system most important for creation and exe-
cution of the prototype.

Appendix A is an example of a PSDL prototype as it appears in [Ref 4: pp. 27-401

and Appendix B is a summary of PSDL grammar and language conventiors from [Ref

1: pp. 54-56, provided as additional clarification for this example. This prototype was

developed to model a simple system for treating brain tumors using hyperthermia and

was structured to meet the following requirements: %"

1. Shutdown: Microwave power must drop to zero within 300 milliseconds of turning
off the treatment switch.

2. Temperature Tolerance: After the system stabilizes, the temperature must be kept
between 42.4 degrees C. and 42.6 degrees C.

3. Maximum Temperature: The temperature must never exceed 42.6 degrees C.

4. Startup Time: The system must stabilize within 5 ninutes of turning on the treat-
ment switch.

5. Treatment Time: The svstem must shut down automatically when the temperature
has been above 42.4 degrecs C. for Ji -inutes.

2
. ., t e

!4

,'4 V d 4 v 4 d ?.-

SPECI IF!CT IONS

RPEU7NITE

SPEC I F I CAT I OM

FOAMiULATE
OUERY

SERRCH SOFT-

URRE ORTABASE

DCOMPOEr OECOMPoSE? PIcRTHS

SPECIF i IH RETRIEVE

cOnOCIWEHSTS COICES

I HPLEMENTAT I I
OF PROTOTYPE

Figure 1. PROCESS OF REQUIREMENTS DETERMINATION AND VALI-

DATION BY PROTOTYPING

[Ref. 4: pp. 26-271

A prototype is created in PSDL using networks of operators communicating via

data streams. A data stream is a communications link connecting exactly two operators,

3

.r or %

a producer (one which produces a data value), and a consumer (one which consumes

or receives the data value). Data streams also carry data values which represent EX-

CEPTION conditions. PSDL exceptions are values of a built in abstract data type cailed

EXCEPTION. This type has operations for creating an exception with a given name

(e.g. "overflow"), and for detecting whether a value is normal (i.e. belongs to some data

type other than EXCEPTION). [Ref. 4: p. 131

The other PSDL data types include the unalterable subset of the built-in types of the

Adas programming language (Ada® is a registered trademark of the United States

Government, Ada Joint Prograimning Office), user defined abstract types, the special

type TIME (the other special type being EXCEPTION as previously described), and the r

types that can be built using the immutable type constructors of PSDL. The PSDL type

constructors were chosen to provide powerful data modeling facilities with a small set

of semantically independent structures. [Ref 4: p. 151

Each data type or operator is either composite or atomic. Composite operators are

implemented by decomposing them into networks of more primitive operators (using

PSDL). Atomic operators are created by retrieving an implementation from a software

base containing reusable software components implemented in an underlying program-

ming language.

In in order to meet timing constraints of the prototype under construction, an op-

erator can either be periodic, or sporadic. A PSDL operator is periodic if a period has

been specified for it explicitly, or if it inherits a period from a higher level in the de-
composition of the hierarchical prototype. If neither of these conditions are true, then

the operator is sporadic or data driven. A sporadic operator is executed (triggered by) "

the arrival of a new data value, possibly at irregular time intervals, whereas periodic

operators are triggered or executed at regular time intervals (specified periods). A per-

odic operator must be completed sometime between the beginning of the period and a

deadline (which defaults to the end of the period). Periodic operators have traditionally

been the basis for the design of most real-timn: Nstems, but the importance of data

driven operators for this type of system is also beginning to be recognized since event

driven in terms of informal sol'tware design methodology, or interrupt driven in terms

of hardware language, can be treated in this category. [Ref 4: pp. 6-13]

The foregoing features make PSDL particularly appropriate I'r real-time sv. tii -

desi:,n. Its structure is highly suitablc for multiple modifications during prototyping it-

erations because it consists of basic building blocks that allow descriptions of ab- ,.

4 -

p

stractions through a top-down design based on data flow. Additionally, tie formal

structure of PSDL for specifying the users real-time constraints provides a basis for

automating the production code to an underlying progranmming language e.g. Adag. The

execution of the PSDL prototype also verifies that the design of an embedded system (a

system that is part of a larger system such as a guidance computer on a missile), within

given timing constraints for the prototype components, will interact with its environment

in a way that meets the timing constraints of the entire system. [Ref. 1: p. 3]

The other components of the CAPS are user interfaces, including a syntax directed

editor with graphics capability (for speeding up design entry and preventing syntax er-

rors), an execution support system for demonstrating and measuring prototype behavior

and for performing static analyses of the prototype design, a software design manage-

ment system for retrieving and adapting reusable software components, and a coinpo-

nent base which functions as a repository for the reusalle components [Ref. 2: p. 91.

The reusable software components in the software base can be written in any general

purpose programming language (provided that PSDL specifications for each module are

included). Figure 2 on page 6 illustrates the CAPS architecture.

For purposes of simplification, and because of its required use within the Depart-

ment of Defense as a standard development language, Ada2 has been chosen for irmple-

menting both the reusable components in the software base and the PSDL execution

support environment. Ada" is a powerful programming language that provides unique

features not found in other languages. These include exception handling, inter-task

communication, (both of which will be demonstrated to be particularly important to the

CAPS execution support environment), and facilities such as generic packages (reusable

software components). Several predefined generic units are already included as part of

the AdaO language definition e.g. CALENDAR which can be used to provide date and

time information. [Ref. 5: pp. 33-341

An Adat program is composed of one or more program units, most of which may

be separately compiled. Program units consist of subprograms, tasks, packages, and

generic units. A subprogram is either a procedure or a function. A procedure specifies

a sequence of actions and is invoked by a procedure call statement. A function specifics

a sequence of actions and also returns a value called the result; therefore a function call

is an expression. A task, on the other hand, dclincs an action that is logicallv executed

in parallel with other tasks. A task may be implemented on a single processor, a multi-

processor, or a network of computers. A package is a collection of computational re-

5

~----------.5.-.'

".'x .,_&' .'vv 'r,,i ': ,Yt';cvV.'&''.,i'r,'., ''..'" . ,".." ,".'/-"Z " . ., .. .v'-' . -,S-. %. .7 . '...- .7 . % -£- .. '- . .. 5,;,, %' .\.-.'. .2. .-*,. . ,."

Fn

I~q

USER INTERFACE ,

PROTOTYPE SYSTEM j ,
OES-RIFilON LANGUAGE

p I -

REWRITE SUBSYSTEM -i

I ~Il

SOFFWARE DESIGN EXECUTION SUPPORT
MANAGEMENT SYSTEM SYSTEM

PROTOTYPE
DATABASE

I

SOERVNAREBASE

p,

.

Figure 2. CAPS Architecture
I-V.-

sources, which may encapsulate data types, data objects, subprograms, tasks, or even

other packages. Its primary purpose is to express and enforce a user's logical ab- ,.V
°

6 .;

A

~~~~.j.~~~~~~~~~ ; .iP.d..'df% '/M / \f (% ~ V ' ~ ' 'W'



stractions within the language. A generic unit is a "template" or "pattern" for subpro-

grams and packages and serves as the primary mechanism for building reusable software

components. Use of a generic unit within an Adao program is termed instantlation.

All Ada program units generally have a similar two-part structure, consisting of a

specification and a body. The specification identifies the information visible to the client

(interface) of that program unit and the body contains the unit implementation details.

[Ref. 5: pp. 55, 554]

Ironically, it is some of these same attractive features of the language that make Adao

too complex and hence, too impractical, for its direct use in the rapid prototyping envi-

ronment. PSDL however has incorporated many of the desirable features of Ada while

elimiinating the associated complexity. The abstractions of PSDL allow a system de-

signer to express ideas at the specification and design level rather than at the program-

ming language level. This substantially reduces the need for consideration of lower-level

details and flow control that would be required if the prototype was developed using Addo

directly.

B. OBJECTIVES

The primary focus of this study is the conceptual development of one component

of the execution support system of the CAPS, the dynamic scheduler. As it is currently

proposed, the execution support system will be comprised of three components, a

translator, a static scheduler, and a dynamic scheduler. The translator is developed in

[Ref. 6] and the static scheduler is developed in [Ref. 71 and [Ref. 81. A secondary, but

equally important focus is the interfacing of the dynamic scheduler with these other two

components.

Within the CAPS execution support environment each of these components will

perform several functions as shown in Figure 3 on page 8. -The translator has four main

purposes:

1. To augment the PSDL code

2. To implement PSDL data streams

3. To implement PSDL conditionals (triggering conditions)

4. To implement PSDL timers (accomplished through the use of a standard library
package which communicates with a hardware clock and is included in any proto-
type that uses timers) 7!



CAPS
EXECUTION
SUPPORT
ENVIRONMENT

DYNAMIC STATIC TRANSLATOR
S CED LERSC E U RII

-INVOKE STATIC -ANALYZES REAL- -AUGMENTS PSDL
SCHEDULER TIME CONTRAINTS OCCE

-INVOKE BUFFER -DETERMINE SCHEDULE -IMPLEMENTS PSDL
PRE-LOADING FOR TIME CRITICAL DATA STREAMS
PRCEDURES OPERATORS

-IMPLEMENTS PSDL
-HANDLE EXCEPTIONS CONDITIONALS

-HANDLE H/W & -IMPLEMENTS PSDL
OPERATOR TIMERS
INTERUPTS DURING
EXECUTION

-SCHEDULE NON-TIME ,
CRITICAL OPERATORS

-EXECUTE NON-TIME
CRITICAL OPERATORS

I I

Figure 3. COMPONENTS OF THE CAPS EXECUTION SUPPORT SYSTEM
I

The static scheduler analyzes the real-time constraints declared in. the PSDL prototype

and attempts to find a static schedule meeting the constraints of the time critical opera-

tors of the prototype under construction.

The dynamic scheduler performs four major functions for the CAPS execution sup-

port sy'stem. The first function, which is to act as a "run-time executive", is of particular

importance to the other two CAPS components. As the run-time executive, the dynamic

8



scheduler will invoke tile static scheduler, and it will invoke buffer pre-loading proce-

dures required by the translator for implementation of data streams. Two other func-

tions include exception handling and hardware or operator interrupt handling that may

occur during prototype execution.

The fourth and perhaps most important function of the dynamic scheduler will be
the scheduling and execution of the PSDL operators which are not time critical (i.e. do

not have real-time constraints). This schedule will be constructed and executed during
prototype execution using "spare processing time" created as a result of early completion

of time critical operators by the static scheduler. Because PSDL assumes that time

constraints of critical operators are absolute when given, the static scheduler allocates

processing resources based on worst case or maximum execution times. On the average,

these worst case processor loads tend to be rare. When a time-critical operator or group

of operators finishes executing before this worst-case time allocation, the static scheduler

can "transfer" control of processor resources to the dynamic scheduler in order to utilize

the resulting spare capacity.

The requirement for explicitly passing control to the dynamic scheduler when the
static scheduler reaches an idle state is necessary because the Ada* language does not

have features for determining when a task or process with an undefined priority should

be executed [Ref. 5: p. 2821. Once control of processing resources is passed to the dy-

namic scheduler, spare processing capacity can be allocated among the non-time critical

operators based on a scheduling process that is not restricted by the requirement for
meeting real-time constraints.

C. BENEFITS OF THIS STUDY

The benefits to be derived from this study are twofold. The First of these is that
development of a dynamic scheduler for the proposed CAPS aids in meeting the need for .

development of a rapid prototyping tool. An effective CAPS would result in significant

improvements and cost savings in the development of hard real-time software systems

which support C3 mission requirements as well as software development for other DOD,

and private industry applications.

The second benefit is the focus placed on more effective processor utilization as a

result of scheduling non-time critical tasks or processes during slack or spare processing

periods. Previous research in the area of real-time system scheduling has greatly em-

phasized, and rightly so, the requirement for meeting the real-time constraints of a sys-

tem or network of systems. This particular emphasis has minimized the importance of

9

..... VW I. . . . . ....................



processor under-utilization which often occurs as a result of ensuring that real-time

constrats are met. The problem of under-utilization is wasteful and could become
quite costly if it is allowed to occur on a regular basis. Design and interface of a dy-

namic scheduler for use within the rapid prototyping environment may provide a viable

solution to this problem.

D. OVERVIEW

The remainder of this study is described by the following overview:

A survey of the background and development of scheduling problems and algorithms L

Development of a dynamic scheduler based on concepts provided by this survey and
the use of Adag as an implementation language

A sun nary which describes the questions answered by this study, future questions or
design areas that need to be addressed, and a brief description of a conmunications
system for demonstrating the feasilibity of the CAPS as a computer-aided design tool.

10

1.

}4

10.

441

" .'* ' ' " " " " - '*, ' -- ", " ,'*:
°  

, '4 -o,' * , * , * ' " " * , 0 
'  

" " *' * " '* " " "

.1



11. BACKGROUND AND DEVELOPMENT OF SCHEDULING

ALGO RITHM% S

A. THE SCHEDULING PROBLEM

A scheduling algorithm provides a set of rules that determine a process or group of

processes to be executed at a particular point in time on a process control computer

system or for a network of systems [Ref. 9: p. 194]. Criteria which have historically been

used to generate process schedules include maximizing process flow (i.e. minimizing thle

elapsed time for the entire processing sequence), or minim-izing thle mnaximum lateness

(lateness is defined to be the difference between the time a process is completed and its

deadline when the deadline is missed) [Ref. 10: p. 112].

Development of an algorithm which focuses on maximizing process flow is applica-

ble to the problem of scheduling 1PSDL operators without real-time constraints since

optimal use of idle processing time is an objective of the CAPS dynamic scheduler.

However, minimizing lateness is not a consideration for the dynamic scheduler since

operators which are not time critical don't have deadlines to meet. For meeting thle re-

quirements of the CAPS static scheduler, neither of these criteria is important partic-

ularly since operators with real-time constraints are by definition niot allowed to be late.

The criteria which are important for process scheduling within the CAPS execution

support environment include meeting the deadlines of operators with real-time con-

straints, ensuring that no data loss occurs, and making optimal use of spare processing

resources. Clearly, finding or developing scheduling algorithms which optimize this set

of criteria presents an interesting and difficult problem.

Another previously defined [Ref. 9: pp. 194-1991 consideration for generating process

schedules and developing scheduling algorithms is based on precedence or priority of

processes to be executed. Two primary priority classifications are static priority and

dynamic priority. In the first case, priorities and start times of processes are known in

advance and is not expected to change during execution [Ref 9: p. 1941. Within the

CAPS, a scheduling algorithm based on a static priority scheme will be used by the static

schieduler to create a schedule that mreets the tirning and precedence relationship re-

quiremnents for thle time critical operators. In the second case, priorities OF processes

change from time to time, depending upon certain execution conditions (e.g. the avail-

ability of idle processing capability) [Ref 9: p. 1941. This priority scheme will be used



by the CAPS dynamic scheduler to schedule non-time critical PSDL operators and to

perform other functions during prototype execution such as exception or interrupt han-

dling.

B. SCHEDULING METHODS

The requirement for different types of schedulers and scheduling algorithms has been

examined in a myriad of research. Most of this work has been directed at the problem

of scheduling processes or operations which must meet critical or real-time deadlines,

but these efforts also have relevance to the problem of scheduling processes which don't

have real-time constraints. The primary reason for this is that while an individual

process (e.g. a PSDL operator) may not have a time critical deadline, scheduling of the

process or group of processes should be completed within a predetermined block of idle

processing time in order to make optimal use of this spare capacity. fhe following ex-

amination and description of scheduling research provides a basis for designing a dv-

namic scheduler to meet this objective.

1. DECOMPOSITION STRATEGIES

A primary consideration in solving the scheduling problem is how to decompose

a set of operations (computations) into a schedule which meets the real-time constraints

of a given system or program. Mok in [Ref. 11 : pp. 125-1331 proposes three strategies

for the decomposition of a set of computations based on timing constraint specifications.

Each of these strategies uses a "graph" model to describe the set of computations and a

"process" model to describe the output generated by the translation of the set of corn-

putations.

The graph model consists of a communications graph, a task graph, and a set

of timing constraints. Timing constraints are represented by the expression (t, t + d)

where t is the start time for a process, d is its deadline, and t + d the interval or period

in which the process is executed. A task graph defines the precedence relationship

among computational events that must occur in order to satisfY a given timing con-

straint. It is composed of "nodes" and "edges" which respectively denote corresponding

functional elements and transmission paths for data in the communications graph [Ref.

11: p. 1261. The objective of this structure is to ensure that data flow requirements are

met. This is also one of the objectives of the PSDL structure, (the other objective being

that real-time constraints will be met). PSDL is based on these concepts with an oper-

ator representing a "functional element" of the language, and with data streams repres-

12

Ye



enting communications paths which transmit or exchange information between

operators.

The Process Model is generated by the translation of the time-critical compu-

tation requirements of a real-time system. The result of the translation is a set of time-

critical concurrent processes [Ref. 11: p. 1251. The translation that results in the process

model is analogous to the generation of the of the CAPS static schedule since this

schedule provides the means for meeting a system's real-time constraints.

Based on these concepts, the first strategy to be discussed is Decomposition by

Critical Timing Constraints. This strategy works in the following manner. For a partic-

ular program, periodic and sporadic processes are created to meet given timing con-

straints. The period and deadline attributes of a process are set to the corresponding

parameters of the timing constraint (t, t + d). These processes may have functional el-

ements in common so a monitor is created to ensure mutual exclusion on the execution

of any program element called by two or more processes. When a program created in

this manner is executed, each process is executed according to its specified timing con-

straints even though this may result in duplicate execution of certain computational

events. [Ref. 11: p.12S]

This strategy works fairly well on single processor with any scheduling discipline

as long as the processor doesn't idle while there is an activated process [Ref 11: p. 1281.

The disadvantages associated with the use of this strategy are the duplication of some

computations within processes that have compatible timing constraints and the com-

munications costs involved for enforcing mutual exclusion.

A second strategy, Decomposition by Centralized Concurrency Control works

in the following way. Periodic timing constraints that are compatible with one another

are grouped together. Two periodic timing constraints are compatible if their deadlines

(d) are equal, (e.g. dl = d2), if their task graphs have some nodes in common, and if the

period (p) of one can divide, or be divided by the period of the other (pi,!p2 or p2, pl).

The compatibility relation partitions the periodic tining constraints into a set of equiv-

alence classes. For each equivalence class, a periodic process of compatible periodic

timing constraints is created, and a sporadic process is created for each asynchronous

timing constraint.

In general, this strategy improves efficiency two ways. First, 'y -rging t',vc

computation of compatible timing constraints into a single process, redundant compu-

tation can be elininated. Second, since concurrency control is being centralized, proc-

13



esses tend to be independent of one another and the interprocess communication

overhead required for concurrency control will be smaller. One disadvantage associated
with this strategy is that attempts to merge compatible timing constraints into a single

program by eliminating as much redundant computation as possible, may not yield the
shortest program possible. A second disadvantage associated with this strategy is its

complexity, which makes it more difficult to understand and to modify when changes

are required. [Ref. 11: pp. 129-1301

The third strategy is Decomposition by Distributing Concurrency Control. In
this strategy, a periodic process will be created for each node (functional element) in the

conmunication graph. Since a functional element F, may occur in two or more task
graphs, the periodic process created for F will )e assigned a period attribute equal to the

smallest period among the periodic timing constraints in which F occurs. When a peri-

odic process PF, is activated, it first synchronizes with an appropriate set of processes

preceded by it. A sporadic process is created for each asynchronous timing constraint
as before. If a functional element occurs in both a periodic timing constraint and an

asynchronous timing constraint, then a monitor is created to enforce mutual exclusion
on the execution of the corresponding program element. [Ref. It: p. 131]

Use of this strategy results in the following advantages. By assigning a separate

process to each functional element, an attempt is made to maximize the computation

that can be performed in parallel. Redundant computation is reduced since task graphs

of compatible timing constraints that contain the same functional elements are detected

in the construction of the synchronization code for each periodic process. If as many
processors are available as there are processes, then this strategy can accommodate a

wider range of timing constraints than the other two strategies. The primary disadvan-
tage with this approach is again one of complexity and the resultant modification diffi-

culties its use implies. [Ref. 11: p. 132]
2. THREE PROCESS MODELS

Another study by Mok [Ref. 12: pp. 5-171 develops three process models using

various scheduling algorithms and techniques. These models are based on the idea that

there is a need for an off-line scheduler and a run-time scheduler for meeting the periodic

and sporadic timing constraints of most real-time systems. As defined by this work. the
off-line scheduler examines the instance of a process, or system and creates a run-time

scheduler together with a database for making scheduling decisions at run time. The

run-time scheduler is the code for allocating resources in response to requests generated

14

* * ~%.*g*W% I. S~ ~ * ,_



at run time, e.g. timer or external device interrupts. A run-time scheduler is totally on-

line if its decisions do not depend on prior knowledge of the future request-times of the

processses. A run-time scheduler can also be clairvoyant, which means that it can pre-

dict with absolute certainty, the future request times of all processes. A clairvoyant

scheduler represents the best possible case though and is usually impossible to imple-

iment in practice. And finally, a run-time scheduler is optimal if it always produces a

feasible schedule whenever it is possible for a clairvoyant scheduler to do so.

The first model described by this piece of research is the Independent Process

Model. It was shown that two possible algorithms provided effective scheduling tech-

niques for this model, the earliest deadline algorithm and least slack algorithm. The

earliest deadline algorithm runs any ready process with the nearest deadline and the least

slack algorithm runs any ready process which has the least slack time available before

it will miss its current deadline. In both cases, ties are broken arbitrarily and the as-

sumption is made that the scheduler can choose to preempt a process by any other ready

process at integral time instants.

Although both of these algorithms are effective, the preceding assumption il-

lustrates why neither of them represents an optimal scheduling method. In order for

these techniques to be optimal, the scheduler would have to be clairvoyant. For exam-

ple, the position of an aircraft is updated by a periodic process which computes the X

and Y coordinates from sensor measurements. A sporadic process may read the X value,

be preempted by the tracking process, and then read a new Y value which is inconsistent

with the origirial X value. Clairvoyancy implies that an exact prediction could be made

as to when the sporadic process which updates the X value will occur, which is unlikely.

A possible means for eliminating this inconsistency is to prevent processes from pre-

empting one another, but enforcement of such a mutual exclusion constraint results in

significant decreases in processing efficiency. [Rcf. 12: p. 71

A feasible, yet still not optimal, alternative to this approach is provided by the

Deterministic Rendezvous Model. This model attempts to alleviate the problems asso-

ciated with the Independent Process Model by using the earliest deadline algorithm with

d%-namically assigned (determined during execution) process deadlines, and through the

implementation of an Ada2-like rendezvous primitive (communications instruction).

The rendezvous primitive establishes synchronization and precedence relation-

ships among executing processes. It operates on the same principle that is required for

the establishment of certain data commnunications links. For example, if Process A

15



wishes to communicate or rendezvous with Process B, A executes a rendezvous primi-

tive. A must then wait for B to execute a rendezvous which indicates that it is ready to
exchange information or rendezvous with A. The precedence relationships among

processes are created by the requirement that all the computation before the rendezvous

primitive in each process must precede all the computation after the corresponding ren-

dezvous primitive in the other process fRef 12: p. 9].

At run-time, this model works in the following way. Processes are grouped into

scheduling blocks with each block initialized with a deadline. During execution, the
deadline of a scheduling block can be moved up if the block must precede another block

which has a nearer deadline but which is not yet ready to run. The rendezvous primitive

provides the required synchronization and precedence information which allows this

scheme to work. It should be pointed out though that this primitive does not guarantee

mutual exclusion for a scheduling block. It also cannot be used to establish coinrnuni-

cations between a periodic process and a sporadic process since by definition, a periodic

process must be executed regularly while a sporadic process may never be executed.

[Ref. 12: pp. 9-101

The third model differs only slightly from the Deterministic Rendezvous ap-

proach. This model called the Kernelized Monitor, uses an operating system kernel as

a monitor for enolrcing mutual exclusion of processes during execution. Processor time

is allocated only in uninterruptible quantums, say of size q, with q chosen to be bigger

than the largest monitor. For simplicity, the required computation times for process

scheduling is in exact multiples of q so that each process takes an integral niumber of

quantums to execute. A process to be executed forms a chain of mini-scheduling blocks

each of which requires a quantum (the basic tine unit of processor allocation). These

mini-scheduling blocks form a partial order imposed by the (intra and interprocess)

precedence relationships and each is given a request-time and deadline. The mini-

scheduling blocks are executed using the earliest dynamic deadline algorithm as previ-

ously described in the discutssion of the Deterministic Rendezvous Model.

One dilfl'crence between the execution of mini-scheduling blocks and the exc-

cution of blocks created by the Deterministic Rendezvous approach is that preemption

should only be allowed to occur after a ini-block has been allocated an integral number

of time quantums. Another difference is that between each chain of mini-scheduling

blocks an interval called a "forbidden region" is included in in the schedule. The purpose

of this interval is to create idle processing time during which a scheduler should not al-

16

M' V ... .... .. o



locate a new quantum of processor time to any process so that a future deadline can be

met. [Ref. 12: pp. 10-111

3. EARLIEST DEADLINE-PREDECESSOR PRIORITY ALGORITHM

Another research effort by Mok demonstrates the use of the earliest deadline

algorithm in a slightly different way. This effort was directed at periodic real-time sys-

tems where input data arrives at fixed rates, but otherwise there are no explicit timing

constraints. Its application is also limited to uniprocessor environments.

rhe Earliest Deadline- Predecessor Priority (ED-PP) scheduling procedure can

be described by these steps. First, a very simple method (as compared to use of the

rendezvous primitive) is used to determine precedence relationships among processes.

Specifically, processes are ranked in a topological order of their corresponding functional

elements in a graph model such that whenever two processes have the same deadline,

higher priority is given to the process which appears earlier in the topological ordering

(hence the name predecessor priority) [Ref. 13: p. 184]. Next, a round robin scheduler

is employed in the following way. Assume that a quantum (the previously defined time

unit) is composed of infinitely many slices. A round robin scheduler allocates c p slices

of each quantum to each process P. Each P will be guaranteed to receive c quantuins

of processor time in every period of length p, thus meeting its deadline. The above al-

location can always be done because available processor time U is < = 1. IRef. 13:

p. 186]

The round robin schedule is then transformed into the desired schedule by

swapping time slices in the following manner. At any quantum, let P be the process with

the nearest deadline as chosen by the ED-PP scheduler. Then, swap as many slices of

P from the next quantums as needed to fill just the quantum under consideration. No

process will misN i;.s deadline since the deadline of p is the nearest. This swapping is re-

peated one quantum at a time from the beginning of the schedule until the valid ED-PI

schedule of desired length is obtained. [Ref 13: p. 186]

4. THE RATE MONOTONIC SCHEDULING ALGORITHM

This algorithm works in the following way. For a set of periodic tasks, a fixed

priority is assigned to each task, with a higher priority being assigned to tasks with

shorter periods. The rate monotonic algorithm is an optimal static priority algorithm in -

a uniproLCessor environment with a set of n tasks with total utilization less than or equal

to n(2'" - 1). When n becomes large, this bound approaches In 2 (approximately 70"o).

17

- .4 ~ .4 ,4.



One method for implementing this algorithm incorporates a "time-division

multiplexing" scheme to schedule periodic tasks (processes). This approach is similar to

the round robin scheduler used by the ED-PP algorithm. This is accomplishcd through

the creation of a set of time division multiplex (TDM) slots and then "hand-packing'" all

the important tasks into them. This is typically done in the context of a cyclical execu-

tive (the cyclical executive operates like the round robin scheduler), which generally uses

few frequencies. The fastest cycle is usually called the major cycle and the slower ones

are called minor cycles. The major cycle is assigned the highest priority. Given the

highest priority, a major cycle with period P will be regularly given I slot every P units

of time. This in effect creates a virtual processor with processing bandwidth 1, P. The

period of the major cycle is determined by two factors. First period P must be short

enough so that it can accormnodate the highest frequency periodic tasks. Second. the

major cycle must also acconmmodate tasks which have lower frequencies but are critical.
i.5

to the mission at hand, since the major cycle has the highest priority. A handcrafted %

table is then constructed to schedule both the high lrequency tasks and the critical tasks

over the virtual processor. The construction of' the scheduling table often takes many

iterations, over the adjustment of the period of the major cycle, the modification of the

scheduling table and the optimization of the code of certain tasks. [Ref. 14: pp. 134-1851

Using another approach, this algorithm can be employed to schedule aperiodic

(sporadic) tasks. Aperiodic tasks consist of a stream of' jobs arriving at the processor

according to some random process such as the Poisson pr cess. In this case, there is

no deterministic upper bound on the worst case processor utilization task even though

each job of an aperiodic task has a bounded worst case execution time. Thus, it is inm-

possible to guarantee that every job's deadline in an aperiodic task will be met. lhe

concept behind dealing with aperiodic tasks is to reserve adequate processor time f'or

each group of tasks so that fast average response time can be ensured.

A simple way to realize this objective is to create a set of periodic tasks, each

of which serves a group of aperiodic tasks. Each of' these server periodic tasks will be

run according to the basic piinciple of the rate monotonic algorithm. Associated with

each server periodic task, there is a ready queue for associated aperiodic jobs. Each of'

these aperiodic jobs in the associated ready queue will be treated as if it is a periodic job

of the server periodic task and dispatched accordingly. That is , if a periodic server has

period P and nominal computation time C, then the associated aperiodic job can be ex- -,

ecuted C time units in every period P at the priority level associated with period P, 'I he

IsIrU
186

* .~. - s P 5 i. '--



P9Ld

ration C; P represents the processor time allocated for associated aperiodic tasks. [Ref.

14: p. 183]

5. "NEXT-FIT-NI"

NEXT-FIT-M is better classified as a decomposition strategy than a scheduling

algorithm. It was developed for use in conjunction with the rate-monotonic algorithm
in a multi-processing environment. The requirement for this strategy is based on the fact
that the rate-monotonic algorithm behaves poorly in multiprocessor systems if the rule
is followed of not allowing a processor to idle when there is a task ready For execution.

NEXT-FIT-NI is based on the following assumptions:

1. Tasks are time-critical and the requests of each task are periodic, with a constant
interval between tasks.

2. Deadlines consist of runability constraints only, i.e. each request must be com-
pleted before the next request of the of the same task occurs.

3. The tasks are independent in that the requests of a task do not depend on the ini-
tiation or the completion of the requests of other tasks.

4. Computation time for the requests of a task is constant for the task. Computation
time here refers to the time a processor takes to execute the request without inter-
ruption.

5. Task utilization is defined by two numbers, the computation time of the request(c),
and the request period(t). The ratio c, t is called the utilization factor of tile task.
[Ref. 9: p.1941

In a multiprocessor environment, this utilization factor provides a means for
decomposing tasks into classes. A class is defined for each available processor in the

system, and tasks belonging to a given class are scheduled on the processor with the

appropriate class designation. Task classes are created based on a range of utilization,
factors e.g. class A tasks have utilization factors between .4 and .1, class B tasks ranee

between .2 and .4, etc.. Actual utilization ranges are established using a logarithmic
scale derived from the formula n(21" - 1) as described by [Ref. 9: p. 1951. When de-

composition and assignment of task classes to processors is complete, execution pro-
ceeds on each processor according to the rate-mionotonic algorithm.

6. A TIME-DRIVEN SCHEDULING MODEL"

Another approach to scheduling is illustrated by the Time Driven Scheduling
Model and its two associated algorithms. BEValuel and BEValue2. [Ref. 10: pp.-
112-1221 This model is based on a linear mathematical function. The concept of in- _-

creasing or decreasing linearity is used to describe the precedence relationship amnong a
set of processes. The input for the model is a set of preemptible processes ', resident in

1

'

19 "
g

- *.* *. '~.' ~ ' "



a computer with a single shared memory and one or more processing elements. Each
process P has a request time R, which is an arbitrary time at which P has been requested
to be executed and a processing or computation time, C. For each P, a value function,
V(t) is created where t is a time for which a value is to be determined and V defines the
value to the system for completing P at time t. The nature of V is deternined by which
scheduling algorithm is used, BEValuel or BEValue2.

These two algorithms take advantage of three value function and scheduling

characteristics:

1. Given a set of processes (ignoring deadlines) with known values br completing
them. it can be shown that a schedule in which the process with the highest value
density V;C. (in which V is its value and C is its processing time as previously de-
scribed) is processed first will produce a total value at every point in time at least
as high as any other schedule. (i.e. a Value Density Schedule)

2. Given a set of processes with deadlines which can all be met (based on the sequence
of the deadlines and the computation times of the processes), it can be shown that
a schedule in which the process with the earliest deadline is scheduled first (i.e., an
Earliest Deadline schedule) will always result in meeting all deadlines.

3. Most value functions of interest have their highest value occuring immediatelyprior to the critical time.

The BEValuel Algorithm exclusively uses observation I above, and is therefore
a simpie greedy algorithm, scheduling first the process with the highest expected value
density. It has been shown that this algorithm perlorms reasonably well in many cases
in which the value function is a step function, or if the function is rapidly decreasing
following the critical time, inspite of the flact it makes no use of critical time itself. The
critical time does, of course, enter the algorithm through the expected value computa-
tion. which uses the value function and the asrunied processing time distribution to
compute an expected value. It was also shown ov experimental results, that this algo-

rithni fails most notably in step function situations where processor loads are low or at
an average level, and a number of processes with close deadlines are in the request set.

The BEValue2 algorithm attempts to rectify this situation by the iniplemcnta-
tion of the following modification. This algorithm starts with a deadline-ordered se-
quence of available processes, which is then sequentially checked for its probability for
overloading the processor. At any point in the sequence in which the overload proba-
bility passes a preset threshold, the process prior to the overload condition with the
lowest value density, will be removed from the sequence. This process is repeated until
the overload probability reaches an acceptable lt',el. Because of' this modification, this
algorithm tends to out perform BEValuel since it always meets deadlines as long as no

* 2'.)

V *- *29*f,,i~* & ,* - .*. f - ** . . . . . . .



- W '. V-., .N - -9. . - - -

processing overload occurs. However, when an overload condition occurs and gradually

worsens, performance of this algorithm is similar to BEValuel. [Ref. 10: p. 1 161

7. DYNAMIC SCHEDULING OF TASK GROUPS

A more complex, yet extremely useful approach to process scheduling is de-

scribed by [Ref. 15: pp. 166-1741. This research examined the problem of dynamic

scheduling for groups of tasks in distributed real-time systems. The scheduling algorithm

developed to meet this requirement is broken down into several smaller algorithms, a

pre-processing algorithm, a distributed scheduling algorithm, and a compression algo-

rithm.

The pre-processing algorithm divides processes into clusters and computes the

required time to execute each cluster. Clusters are ordered into a precedence relationship

based on these computations. This ordering is somewhat arbitrary and can be modified

(through the the use of the compression algorithm) if necessary. Processes within a

cluster are ordered aciording to real-time constraints by a method similar to that de-

scribed by the earliest deadline approach. Based on this computation, this algorithm

makes the decision whether or not there is enough processing time available to schedule

a cluster of processes. If there is, a "dispatcher module" begins or enables the execution

of the cluster.

Once a cluster begins executing, due to precedence constraints, processes within

the cluster must synchronize in real-time in order to communicate with one another.

When one process finishes executing, it sends an enabling message, as well as output

data, to a successor process (the one which is next in the precedence ordering). A suc-

cessor process can begin execution only after the enabling message from its predecessor

has been received. Another module called the inter-task coimnunication handlcr, is in-

voked each time a process finishes execution. This module evaluates incoming enabling

messages and updates the number of finished predecessor processes when more than one

is required for the execution of a particular successor task, and it sends enabling mes-

sages to successor tasks.

In the instance of a distributed system, the distributcd scheduling algorithm is

invoked when there is not enough processing time available to successfully execute a

cluster. This algorithm attempts to find another location in the system for the cluster

to be executed.

When it appears that a cluster cannot be successfully executed at any location,

S"the compression algorithm is invoked. Bccause the computed execution time for a

21

* V a ~ ~- -



cluster is only an estimation, this algorithm is designed to compress the execution time

for the entire cluster, or for individual processes when possible, within the cluster. [Ref.

15: pp. 167-169, 1731.

8. A RECEIVER-INITITATED SCHEDULING STRATEGY

Another scheduling method is described in a comparison-oriented piece of re-

search. Chang and Livny [Ref. 16: pp. 175-180] examined Sender-Initiated and

Receiver-Initiated scheduling strategies in a multiprocessor environment. The
Receiver-Initiated approach is of primary interest and works in the following way. Upon

the completion of a job (process) the load of the processor is examined to determine if

it is underloaded. When the number of jobs left in the queue is smaller than some preset

threshold, the processor is tagged as underloaded. When this condition occurs, the

underloaded processor polls other processors in the system to offer "help" (i.e. processing

resources). This technique was proven to be an effective method for sharing and dis-

tributing resources among processors in a multi-processing environment. The basic idea

appears to be a reasonable approach for sharing resources among processes as well.

9. APPLICATIONS OF THESE METHODS FOR THE CAPS SCHEDULERS

The foregoing scheduling methods were described to provide background infor-

mation on the development of scheduling techniques and also to provide a basis for the

development of the CAPS dynamic scheduler. Some of the techniques are also useful

for describing the operation of the CAPS static scheduler and how the static and dy-

namic schedulers will interact in the execution support environment.

22.

A:

F2

~ JS~ ?. .~ ~.*'*~*-'~*'*J. 5 ~.'ss 'j. ,~ I~U -P~'S ,,sS '~j. .~ p ~ ~



III. THIE CAPS DYNAMIC SCHEDULER

A. SCHEDULING FUNCTIONS

Within the CAPS execution support system, the dynamic scheduler will perfbrm se-
veral functions. First, it will act as the "run-time" executive that invokes, or starts the
static scheduler and buffer preloading procedures for the translater. Second, it will cre-

ate and invoke a schedule for the non-time critical operators of the PSDL prototype,
third it will handle exceptions (both defined and undefined types) fbr all of the the CAPS

components, and fourth it will handle both hardware and operator interrupts that may
occur during prototype execution. These Functions are illustrated by Figure 4 on page

24.

The proposed operation of the dynamic scheduler is outlined by the hierarchal de-
scription included as Appendix C. This design is based in part on Mok's "run-time
scheduler" as described in [Ref. 12: pp. 5-17]. It provides the code for allocating re-

sources in response to requests generated at run time, e.g. hardware or operator inter-
rupts, and its scheduling decisions will not be dependent upon prior knowledge of future

request times for processes to be executed. The specific functions it performs arc de-
scribed below.

1. THE RUN-TIME EXECUTIVE FUNCTION
At the start of prototype execution, the run-time executive function will invoke

a procedure called PRELOADER for the translator. PRELOADER is a buffer initial-

ization process required for implementation of PSDL data streams. The translator re-
quires this process because buffers are regarded as "state machines" and must contain a

• certain value or be in a certain "state" at the start of prototype execution.

The static scheduler decomposes the prototype into a set of time critical and
non-time critical operators. The result of this decomposition are files or "queues" of
operators which are the input for the static schedule or the dynamic schedule. The

run-time executive function will also invoke (start) the execution of the static schedule

once it's created.

The schedule for time critical operators is based on the precedence relationships
among the operators, and on the prototype's real-time constraints. The static sclicduler

creates a schedule that will ensure that both of these requirements are met. Otie of the

23



(faradi1n rciaa

Tranlato Invokets p
Static~D Aam'a~

Figuren 4. DYNAMICte SCEDLE UNTIN

critcal peraon oeratr No-tim
excetio Criica Opeat4

3.0.



scheduling approaches it uses to accomplish this is a blocking strategy similar to the

method employed by Mok's Kernelized Monitor Model.

In the formulation of the static schedule, the static scheduler assumes worst case
rather than average case processor utilization for meeting a given operator's processing

requirements. The scheduling blocks will also contain periods of time between operators

in which nothing is scheduled in order to ensure that precedence relationships are

maintained (i.e. data flow requirements are met). These two conditions result in idle

processing time that can be used by the dynamic scheduler to schedule and execute the

prototype's non-time critical operators. The resulting spare processing capability will

therefore occur unpredictably as shown by Figure 5 on page 26. It is then up to the

dynamic scleduler to schedule non-time critical processes into these idle areas of the

static schedule. This idea is similar to the "swapping" methodology employed by the

"ED-PP" algorithm, and the "time-division multiplexing" approach within the rate

monotonic algorithm.

2. THE CREATE NON-TIME CRITICAL OPERATOR SCHEDULE

FUNCTION

When idle processing time is available for use by the dynamic scheduler, the

steps illustrated by Figure 6 on page 27 will take place. The static scheduler will attempt

to "rendezvous" with the dynamic scheduler in order to indicate or "send the message"

that processing time (a "time slice") is available. This process is based on the "receiver-

initiated" (poll-when-idle) strategy, and on the concepts of "inter-task communication" dil

and "dispatcher" modules as described in the discussion of dynamic scheduling algo-

rithms for distributed systems.

The dynamic scheduler must then determine (i.e. perform a compare operation)

if there is enough time available in the time slice to execute a non-time critical process

before the next scheduled start time of a time-critical scheduling block. This compare

operation is analogous to an operation performed by the BEValue2 algorithm of' the

time-driven scheduling model. Recall that this algorithm makes a deternination as to

whether or not a given process will overload the processor. Similarly, the dynanic

scheduler should determine whether or not a non-time critical process can be successfully

executed within a given amount of time. If this is not possible, the process won't be

scheduled. When there is enough time available, operators will be scheduled using one

of the basic principles of the rate-monotonic algorithm. That is, an operator with the

25

% %



,*4

operators scheduled
based on worst casel

poessor requirements

0

:i:ii.3 A i.!:.:Ischeduling scheduling
1block flnothing block

scheduled

Figure 5. STATIC SCHEDULER BLOCKING METHOD
I

shortest execution time will be considered to have the highest priority and will be

scheduled for execution first.

This "priority" assignment is an arbitrary one since the processes to be executed

are not time critical. The logic of this approach is simply to schedule as many non-time

critical processes as possible into a "block" of idle time and it is baed on the following

assumptions:

I. Employment of a more complex scheme such as the creation of a "value density
schedule", is unnecessary and would not effectively contribute to allotment of'
processing resources among the non-time critical processes.

2. Processes are independent of one another (i.e. there are no precedence relationships
among the operators).

3. An execution time must be assigned to each of the operators during the specilica-
tion phase of prototype development. The assigned execution time should not be
confused with a "timing constraint", it is only meant to provide an estimate of the
resources required for the execution of a non-time critical process.

26

"r M I,



time-out Stic non- Unm
(forbidden region) Shlecia operaton;

t vime a v. 
opabl

4. No-time Critiaroces w perao equecd in teoprtorque"bsdoa

" t st Sce.h s encn wutie f d the

totypeeope to

2. W evailable

ato a th tp f te ueu (heoperator wihtesorts prcsigrqurmn)kh

interrupts temnae

dynmicschdu eralto ior a arsaean lo hroce ssrt eanil ni

interrpt 3.

Figure 6. CREATION AND EXECUTION OF THlE DYNAM1IC SCHEDULE

4. Non-time critical processes will be sequenced in the "operator queue" based on a

t shortest first" scheme. his sequencing will be performed by the static scheduler
during the prototype decomposition operation.

For as long as time remains in an unused portion of the static schedule, the

27d

dynamic scheduler can schedule non-time critical processes for execution based on the

preceding assumptions. When there is not enough time available to schedule tile oper- Z-

ator at the top of the queue (the operator with the shortest processing requirement), the %

dynarnic scheduler will go into a "wait' state and allow the processor to remain idle until .
tile start of the next static scheduling period. Allowing idle time in this instance is based-

on the idea of a "forbidden region" in the Kernelized Monitor Model. This forbidden %"

rcgion is necesbtry in order to ensure that a future deadline of the static schedule can,



be met. Allowing this idle time when using a rate monotonic approach also makes sense

from a performance standpoint since utilization related rescarch has indicated that

processing efficiency tends to decline for processor loads above In 2 (approximately

70%). 

Even though a "compare" operation is performed to determine whether or not

an operator can be completed within a given amount of time, the case may arise when

a non-time critical process may exceed this amount of time. This cannot be allowed to

occur since it would interfere with the static schedule and in effect, meeting the require-

ments of the system's real-time constraints. Therefore, execution of the non-time critical

process must be preempted by some type of monitor.

The monitoring operation created to do this should track the status of an exe- I

curing process relative to a system clock, and will terninate (preempt) a process in order

for the next scheduling block within the static schedule to begin. When a process is

terminated, it will be returned to the proper sequence position in the operator queue so

that it can be rescheduled at another time. This monitoring process will also perform

status monitoring with regard to completion of an operator i.e. it will "notify" the

compare operation that the execution of a process is complete so that an attempt can

be made to schedule another process. Finally, the monitor will call exception or inter-

rupt handling procedures when the execution of a non-time critical process results in one

of these two conditions.

3. THE TERMINATE PROTOTYPE FUNCTION

When exceptions occur as a result of processing performed by any of the three )

CAPS components, the terminate protot pe "inction will be called. This function will

perform the operations necessary to terminate the execution of the entire prototype. e.g.

terminate whate-er processes are executing at the time the exception occurs, and notify

the CAPS user that an exception of a certain type has occured.

4. THE HANDLE INTERRUP'rS FUNCTION

Two types of interrupts can occur while a prototype is executing, an operator

interrupt and a hardware interrupt. Depending upon the nature of the interrupt, this

function will call the tertinate prototype function or it will initiate some other appro-

priate interrupt handling procedure. For example, in the instance of a hardware inter-

rupt, instructions to go to a particular hardware address could be executed.

28

% V %



B. THE USE OF ADA

The dynamic scheduler will be implemented in Adao as previously described. Ap-

pendix D provides a "skeleton" program based on the AdaO language in order to show

some of the features of the language which are relevant for this implementation. For

example, it demonstrates the use of an Ada@ procedure. Recall that an Ada( procedure

is a fundamental programming unit that encapsulates a series of statements.

This program also demonstrates the use of a task. A task in AdaO is based on the

concept of communicating sequential processes. Tasks can be viewed as independent.

concurrent operations that communicate with one another by passing "messages" [Ref.

5: pp. 6S, 701. This feature is particularly important to the CAPS execution support

system as mentioned earlier because it provides the means for communication among

each of the three CAPS components.

Another feature of the language included in this program is the instantiation of Lile

generic package CALENDAR. CALENDAR has a predefined function, CLOCK that

returns the time of day and exports a data type of time. This package provides a simple

yet effective means for monitoring the execution time of an operator.

One other aspect of Ada® illustrated in Appendix D is an exception handling pro-

cedure. The Adag language contains several predefined exceptions, and it also provides

a user with the ability to define exceptions Ibr a given application. For the CAPS, these
user-defined exceptions will be be the predefined PSDL exceptions (e.g.

FULL_BUFFER, EMPTYBUFFER).

An exception is handled within the program unit where it is created (via a raise

statement), or it can be sent (propagated) to another unit for handling. Since the dy-

namic scheduler is considered to be the run-time executive for the CAPS execution sup-

port system, it makes sense from an efficiency standpoint to handle exceptions at this

"central" location within the execution environment.

The "centralization of control" logic also makes sense for the the handling of inter-

rupts. Although not shown by the skeleton pro'gram. interrupt handling procedures can

include an Ada@ representation clause which allows the use of machine-dependent facil-

ities. For example, an Ada( representation clause of the form "for FAIL use at

l6=lFE ' °" as illustrated by [Ref 5: p. 30S] can be used. The hexadecimal number

16= 1FE4 represents some hardware or vector address.

One last language feature which should be mentioned, is a possible "tile" structure

for storing the non-time critical operators. Recall that this file (the "operator queue")

29



is one of the results of the prototype decomposition performed by the static scheduler.

Several different structures could be used depending upon which would provide the most

effective means for performing input and output operations on processes during dynamic

scheduling. One structure which is often used in Ada ® to hold sorted data is a binary

tree as illustrated by [Ref. 17: p. 150]. Other file structures which could be used include

a linked list or a data stack. Implementation of any of these would allow the dynamic

scheduler to perform the input!output operations required by its design.

3

4.

S.:

p, ,

=

I

30 -

SN-



IV. SUMMARY

A. THE QUESTIONS ANSWERED

This study attempted to meet two objectives:

1. Conceptual development of a dynamic scheduling component for the computer-
aided design system CAPS

2. Interface of the dynamic scheduling component with the other two components of
the CAPS execution support system

The focus on these objectives has resulted in the conceptual development of a four

function dynamic scheduler. This design as outlined by Appendix C, demonstrates how

the dynamic scheduler will interact with the translator and the static scheduler cornpo-

nents within the CAPS execution support environment. Further, the scheduling ap-

proach proposed for the scheduling of a prototype's non-time critical provides a viable

alternative for making effective use of idle processing resources that occur as a result of

ensuring that a system's real-time constraints are met.

B. THE PROBLEMS THAT REMAIN

Future research for the CAPS dynamic scheduling problem needs to address several

areas. An area of primary importance is a more detailed development of the conceptual

design, including an examination of its f'easibility given the assumptions its based on.

Special attention should be placed on developing a inc:-c dc~a..-tin of the op-

erations required for the "Create Non-time Critical Operator Schedule" function. Once

this process is complete, the Ada ® coding required to implement the dynamic scheduling

functions can proceed.

Another area which needs to be addressed is the development of a "debugger"

function for the dynamic scheduler as proposed by [Ref. 18] and [Ref. 2: p. 91. The

purpose of the debugger is to collect statistics on prototype behavior and to accept

control of prototype execution when a PSDL exception occurs. (Recall that the initial

dynamic design merely terminates prototype execution). The addition of this function

vwould enhance, and at the .anic time, possibly reduce the number of iterative phases

required during prototype development because of the additional control and inl'orma-

tion it provides to the designer.

The debugging function can be fairly conventional. For example, the ability to at-

tach breakpoints to operators, which can be conditional with respect to a PSDL predi-

31

e 'A



cate (an "if' condition) could be included. Selected inputs or outputs of an operator

should be traceable, resulting in a display of the values and their associated arrival or

departure times. Conmands for inserting and deleting values in data streams should

also be provided.

The facilities for gathering statistics should include commands for monitoring both

frequencies and timing information. Frequency statistics include the number of values

that pass down a data stream, the number of times an exception occurs, etc. Timing

statistics include minimum, average, standard deviation, and maximum times for the

execution, response, or intervals between firings of an operator. These statistics are in-

tended primarily for feasibility and performance studies. [Ref. 19: pp. 10 -131

C. CAPS: AN EFFECTIVE DEVELOPMENT ALTERNATIVE

An example of an effort that would derive substantial b,.neiit from the use of CAPS

is the software development required for implementation of the Defense Switched Net-

work (DSN). The implementation strategy that will be employed requires components

and features to be adopted gradually, beginning with an initial capability based on to-

day's voice network [Ref. 20: p. 11].

The DSN is the future Command and Control (C2) telecommunications network for

the U.S. strategic armed forces. It is being designed to provide rapid, endurable, and

economical telecommunications services to both high and low priority users. Iigh pri-

ority users require immediate (i.e. real-time) service under the most difficult mission

stress conditions. Low priority users require service for performing operational support

activities such as logistics and personnel related functions which are not subject to the

same type of real-time constraints. In order to meet these requirements, the network is

planned to include more than 200 U.S. Government-owned conmnIUnLations switches in

Europe and more than 60 U.S. Government-owned switches in the Pacific, as wll as

conmmercially leased switching and transmission services in the Western-lHemisphere and

Ilawaii. [Ref. 20: p. 6]

Comprehensive computer support that is highly reliable friom both a security and a

survivability standpoint, will be required to maintain control of this vast network. This

computer support will assist in perfbrming these network functions:

1. monitci fa and surveillance to detect performancc abnormalities automatically

2. implementing real-time controls that prevent switch or network congestion

3. analyzing traffic data to permit continuous optimal operation of the network

32

" -. ,- .,,



Computer aids that minimize personnel requirements will also be employed--locally
and from remote locations--in administration, operations, maintenance, and network
manazement of network elements. (Ref. 20: p. 6]

This diverse set of' requirements illustrates why this development eflbrt would be
significantly enhanced by using CAPS, its prototyping methodology, and PSDL. This
is especially true if the computer support systems are developed using Ada ® as currently

planned.

D. CONCLUSION
A primary advantage of CAPS for system development is that PSDL use for con-

struction of an executable prototype would be much easier and simpler than direct use
of Adal. Additionally. executing a prototype (or prototypes) that demonstrates the
functioning and interaction of modules within a complicated embedded system like the

DSN, would significantly increase the confidence that the system can be built as
planned. Using a prototype would also improve cost estimates since the cost of the in-
tended system is generally proportional to the cost of a rapid prototype. [Ref. 19: p. 12]

The conceptual development of the CAPS dynamic scheduler represents a signilicant
step forward in meeting the demand for rapid dexelopment of reliable software for large

real-time computer systems. Additionally, the proposed "shortest first" scheduling al-
gorithm used by the dynamic scheduler could be effective for scheduling non-time critical
processes in other real-time environments as well. This scheduling approach could prove

to be an effective way for utilizing idle processing resources which are often wasted in

large real-time systems.

33

-. 0 .. "5% SW .- % . K % .~ % . ~ - - ~ ~ -
5' * ~ -~~S r.Ir ~ v~w '



-.-
' - A - U * . .. 

d

APPENDIX A. A PSDL PROTOTYPE Up

This is an example of a PSDL prototype as it appears in [Ref. 4: pp. 27-40]. It was

developed to model a simple system for treating brain tumors using hyperthermia. "

OPERATOR brain_tumortreatmentsystemSPECIFICATION

INPUT patientchart: medicalhistory,
treatmentswitch: boolean

OUTPUT treatmentfinished: boolean
STATES temperature: real
INITIALLY 37.0

DESCRIPTION
(The brain tumor treatment system kills tumor cells

by means of hyperthermia induced by microwaves.

END

IMPLEMENTATION
GRAPH

100

TEMPERATURE TRE THIFT.POU _ER

PAT I O f TClART HYPERTHERn I L _SYSTE11I TR ER" ENT IN I SHED
TRERiTMEPIT.SU I TCH

DATA STREAM treatment-power: real

CONTROL CONSTRAINTS Up

OPERATOR hyperthermiasystem
PERIOD 200 BY REQUIREMENTS shutdown

OPERATOR 3imulated_patient
PERIOD 200

DESCRIPTION {paraphrased output)
END

TYPE medical_history
SPECIFICATION
OPERATOR gettumordiameter
SPECIFICATION
INPUTS patient-chart: medicalhistory,

tumor-location: string

34 ft

..t.-.v-j



OUTPUTS diameter: real
EXCEPTIONS notumor
MAXIMUM EXECUTION TIME 5 ms
DESCRIPTION
Returns the diameter of the tumor at a given location,
) produces an exception if no tumor at that location.

END

KEYWORDS patientcharts, medicalrecords, treatment records,
lab records

DESCRIPTION
{The medical history contains all of the disease and
treatment information for one patient. The operations
for adding and retrieving information not needed by
the hyperthermia system are not shown here.

END

IMPLEMENTATION
tuple {tumor_desc: map-from: string, to: real{, ... }

OPERATOR get-tumor_diameter
IMPLEMENTATION
GRAPH

PMT I ENT..X)4AT
TUPLE. I;-I"_TUR._DEs;

To
4

rUIIOa.,OCi T I"MIP.FETCI1 I1 AlETER

DATA STREAM td: tumordescr
CONTROL CONSTRAINTS
OPERATOR map. fetch
EXCEPTION notumor IF not(map.has(tumor location, td)) a

END

END

OPERATOR hyperthermia-system
SPECIFICATION
INPUT temperature: real, patient_chart: medicalhistory,

treatment_switch: boolean
OUTPUT treatment_power: real, treatmentfinished: booleanMAXIMUM EXECUTION TIME 100 ms
BY REQUIREMENTS temperaturetolerance

35 ,

I



MAXIMUM RESPONSE TIME 300 ms
BY RFQUIREMENTS shutdown

KEYWORDS medical-equipment, temperaturecontrol,
hyperthermia, braintumors

DESCRIPTION
{After the doctor turns on the treatment switch, the

hyperthermia system reads the patient's medical record
and turns on the microwave generator to heat the tumor
in the patient's brain. The system controls the power
level to maintain the hyperthermia temperature of
42.5 degrees C. for 45 minutes to kill the tumor cells.
When the treatment is over, the system turns off the
power and notifies the doctor.

END

IMPLEMENTATION
GRAPH

go

PAT I ENTJZHOIT STIVIT-.JP TRERTTIEK IN I SUM

10

TBEAT1IT..SU 1T1H SET-UTRL TRERYEAT POIJER

DATA STREAM estimated-power: real
TIMER treatmenttime
CONTROL CONSTRAINTS
OPERATOR startup
TRIGGERED IF temperature < 42.4
BY REQUIREMENTS maximum-temperature

STOP TIMER treatment-time
RESET TIMER treatmenttime IF temperature <= 37.0

OPERATOR maintain
TRIGGERED IF temperature >= 42.4
BY REQUIREMENTS maximumtemperature

START TIMER treatment-time
BY REQUIREMENTS treatment_time, temperature_tolerance

OUTPUT treatment-finished IF treatment-time >= 45 min
BY REQUIREMENTS treatmenttime

36

e\V\V.~~~~~~ r~1
V b .. % % rl



END

OPERATOR start-up
SPECIFICATION
INPUT patient_chart: medical history, temperature: real
OUTPUT estimated-power: real, treatment_finished: boolean
BY REQUIREMENTS startup-time

MAXIMUM EXECUTION TIME 90 ms
BY REQUIREMENTS temperaturetolerance

DESCRIPTION
(Extracts the tumor diameter from the medical history and

uses it to calculate the maximum sife treatment power.
Estimated power is zero if no tumor is present. The
treatment finished is true only if no tumor is present.

END

IMPLEMENTATION Ada start up
END

OPERATOR maintain
SPECIFICATION
INPUT temperature: real
OUPUT estimated-power: real, treatment_finished: boolean
MAXIMUM EXECUTION TIME 90 ms
BY REQUIREMENTS temperaturetolerance

DESCRIPTION
The power is controlled to keep the power between 42.4
and 42.6 degrees C.

END

IMPLEMENTATION Ada maintain
* END

OPERATOR safetycontrol
SPECIFICATION
INPUT treatment switch, treatment-finished: boolean

estimated-power: real
* OUTPUT treatment-power: real

BY REQUIREMENTS shutdown
MAXIMUM EXECUTION TIME 10 ms -
BY REQUIREMENTS temperaturetolerance p

DESCRIPTION
(The treatment power is equal to the estimated power

if the treatment switch is true and treatment finished
is false. Otherwise the treatment power is zero.

END

IMPLEMENTATION Ada start-up
END

37

Wlr .W%. or . -'r*V . . . . . V C



APPENDIX B. PSDL GRAMMAR SUMMARY

This is a summary of PSDL grammar and language conventions as initially de-
scribed in [Ref. 1: pp. 54-56] and further refined by [Ref. 61. Several conventions are
used for symbology in the grammar. [ Square Braces I indicate optional items. ( Curly
Braces } indicate items which may appear zero or more times. Bold face type indicates
a named terminal symbol which must appear in the program listing the programmner
writes. "Double quotes" indicate character literals which must appear in the program
listing. The "I" vertical bar indicates an exclusive-or selection. In this case the pro-
gramner selects one and only one of the items separated by the vertical bar.

As an example, the token timinginfo is one of six mutually exclusive possibilities
which may define the attribute token. The attribute token may appear zero or more
times to define the interface token, which is a required attribute of the operatorspec
token. Timing info, if selected for attribute, may be empty, or it may contain one or
more of the optional tokens allowed to define timinginfo. Each of these tokens may
appear no more than one time for a given instance of timinginfo.

psdl = { component}

component I datatype
I operator

data type = type id type spec type inipl

operator = operator id operator spec operatorimpl

type spec = specification [typedecl] {op speclist) [functionality] end

opspeclist = operator id operator spec

operatorspec = specification interface [functionality] end

interface = {attribute [reqmtstracecj

attribute = genericparam
input
output
states
exceptions
timinginfo

genericparam = generic type_decl

38

~ ~ %. % w ~ 'j, '. .~ %'%V% - . - ''~ ~ ~ W



input = input type_decl

output output typedecl

states -states type_decl initially expressionlist

exceptions = exception id_list

idlist = id { "," id)

timingjinfo [maximum execution time timel
[minimum calling period time]
[maximum response time time]

time = number [unit]

unit = J microsec I ins I sec I rin I hours

reqmtstrace = by requirements idlist

functionality = [keywordsl [informal_descl [formaldesci

keywords = keyivords id_list

informal desc = description "{" text ")"

formal desc = axioms "{" text "I"

type impl = I implementation Ada id
implementation typename { opimpIlist } end

opimpl list = operator id operator impl

operatorimpl = I implementation Ada id
implementation psdlimpl

psdl_inipl = dataflowdiagram
[streams]
[timers]
[controlconstraints]
[informal_desc]
end

dataflowdiagram = graph f link }

link =id . opid "->" id

opid = id [ ":" time]

streams = data stream type decl

type decl = id list ":" typename ", id list ":" type_name

type name = lid
Iid "[" typedccl "1"

timers = timer id list

controlconstraints = control constraints f constraint

constraint = operator id

39



Itriggered [triggerl [ "if' predicatel [reqmts tracel]
[period time [reqmtstracel I
[finish isithin time [reqmts trace] 1
(output id list if predicate [reqmts traceJ }
,e.,ceptio:-. id [if pircictc] cq i2i-ttacc;
,timerop i [if predicate] [reqmtstracel }

timer op = start I stop I read I reset

trigger = by all id list
by some id_list

predicate = not predicate
predicate and predicate
predicate or predicate
expression-list
id ":" id-list

expressionlist = expression ( "," expression)

expression = number
constant
id
type name ."id " exprersionjlist )

40

p

- -

• - - - , %,, - • , ,, , ,, • , ,,.-, - i. . , , - -,- - . . • . - - . . ., '*"



"d ~ h =J, ~ . . . -. ~ , - - . - K

APPENDIX C. DYNAIMIC SCHEDULER FUNCTIONS

1.0 Run-Time Executive

1. 1 Invoke Translator Preloader Procedure
1. 2 Invoke Static Scheduler

2.0 Create Non-Time Critical Operator Schedule

2. 1 Compare Time Slice to Operator Queue Time Requirement
2. 1.1 Find top of queue (operator with shortest

time requirement)
2. 1.2 Subtract operator time requirement from time slice
2.1.3 When result of subtraction > 0, send time

available message to execute operator function
2.1.4 When result of subtraction < 0, let processor

idle until start of next static schedule
requirement

2.2 Schedule Operator
2. 2.1 Schedule available operator from operator

queue for execution
2.2.2 Send completion message to monitor
2.2.3 Send exception message to monitor
2.2.4 Send hardware/interrupt message to monitor

2.3 Monitor Process
2. 3. 1 Mon.tor execution time of operators
2. 3.2 Terminate operator if available

processing time is exceeded
2.3.3 When operator completes execution,

send message to compare operation
to see if more execution time is
available

2.3.4 When exception occurs during dynamic
schedule processing, call terminate
prototype function

2.3.5 When interrupt occurs during dynamic
schedule processing, call handle
interrupts function

3.0 Terminate Prototype
3.1 Terminate Translator
3. 2 Terminate Static Scheduler
3. 3 Terminate Dynamic Scheduler

4. 0 Handle Interrupts
4.1 Send terminate request to terminate prototype
4. 2 Send non-terminatable request to appropriate K

location

41

-. r 4.-o e .



.~ S ~W t S. - - - - C S - - 5 - -
.5..

5%~

$

5,.

C'

S.
C'.

.5.

.5

5,.

5..
5.5

5.

'S.

5-

S.

S..

S..
V

42

- S S S 5.5 ~



I1

APPENDIX D. PSEUDO-COlDF FOR AN ADA PROGRAM

This pseudo-code illustrates some useful features of the Ada2 programming lan-

guage (Adag is a registered trademark of the United States Government, Ada Joint

Programming Office). A detailed description of how these features can be implemented

in an Ada ® program appears in [Ref. 5_

--Two hyphens indicate the start of a comment in the Ada language.
--Four hyphens within this pseudo-code are used to enhance
--readability and to indicate the absence of formal
--parameters, statements, or other features of the language
--that are required by an ,ictual program

with OPERATORQUEUE; --the operator queue of
--non-time critical processes
--will be created by the
--static scheduler

with CALENDAR; --the Ada language definition
--includes the package CALENDAR
--with a predefined function,
--CLOCK that returns the time
--of day and exports a data type
--of time

procedure DYNAMICSCHEDULER is

declare

FULLBUFFER: exception; --when an exception is
EMPTYBUFFER: exception; --raised within an Ada
OVERJIME: exception; --program unit, it is
PSDL_EXCEPTION: exception; --propogated to a level

43 I------* ~ ~



--where it can be handled

type READY is text; --the text types indicate the
type SCHEDULE is text; --different messages exchanged
type TIMESLICE is text; --during a rendezvous

PRELOAD READY;
SCHEDULE CREATED;
IDLE TIME_SLICE;

procedure PRELOADER; --PRELOADER will be some actions
--that will invoke buffer
--initialization procedures for the
--translator

procedure START; --START will consist of some actions
--to start the execution of the
--static schedule

procedure CREATESCHEDULE is --the procedure that will
--create a schedule for
--the non-time critical
--operators

use CALENDAR;
use OPERATORQUEUE;

TIME, OPERATORTIMEREQUIREMENT TIMESLICE;

begin

--COMPAREOPERATION

44



--find top of OPERATORQUEUE (operator with shortest
--time requirement)

--select this operator and compare its execution
--time with TIME_SLICE in order to determine
--if enough time is available to
--execute this non-time critical process

--while enough time is available, in a given
--TIME_SLICE, schedule processes for execution

--else let the processor idle till start
--of next static scheduling block

--MONITORPROCESS --implement a process to monitor
--status of executing non-time
--critical operators (time, completion, etc.)
-- using the generic package CALENDAR

end CREATESCHEDULE;

task RUNTItlE_EXECUTIVE is --an Ada task is an effective
--method for implementing the
--the run-time execative function
--because it provides a means for
--communication among the three
--execution support system commponents

--entry and accept provide the
--means for "two way"
--communications among the three
--execution support system components

entry TRANSLATOR (PRELOAD : in READY);

--the communications path from
--the dynamic scheduler
--to the translator which will be
--used to invoke the buffer
--preloader procedure

enty STATICSCHEDULER (SCHEDULE in CREATED);

45



--the communications path between
--the dynamic scheduler and the
--static scheduler which will be
--used to invoke (start) the
--execution of the static schedule

entry IDLETIME (IDLE in TIMESLICE);

--the communications path between
--the dynamic scheduler and the
--static scheduler which will be
--used to indicate to the dynamic
--scheduler when idle time is
--available

end;

a"

task body RUNTIMEEXECUTIVE is

begin %

accept TRANSLATOR (PRELOAD in READY) do PRELOADER;

--PRELOADER will be some actions that
--will invoke buffer initialization
--instructions

accept STATICSCHEDULER (SCHEDULE : in CREATED) do START;

--START will consist of some actions
--to start the execution of the static
--schedule

accept IDLE-TIME (IDLE : in TIMESLICE) do CREATESCHEDULE;

--when idle time is available, the
--dynamic scheduler can schedule
--non-time critical processes for
--execution during a given
--"time slice"

46

A'.5 ~ ~ ~~ *jfu ~ ~ 4~ *~*,p,%



end RUN_TIME_EXECUTIVE; Z

begin

RUNTIME_EXECUTIVE.TRANSLATOR (PRELOADER);

RUN_TIME_EXECfTV7.. STATICSCHEDULER (START);

RUNTIME_EXECUTIVE. IDLETIME (CREATESCHEDULE);

--when an exception occurs, the generic procedure TEXTrO
--and an application specific procedure such as PUTLINE
--can be used indicate to the CAPS user what the nature
--of the exception is

4%

exception
when FULLBUFFER=>

TEXTIO.PUT_LINE ("An attempt was made to
update a full buffer");

TERMINATEPROTOTYPE;

--using the Ada generic package TEXT_O,
--and a user written procedure PUT_LINE, %
--a message as shown will appear on the
--user's screen and prototype execution
--will be terminated when an exception is
--raised.

end;

exception
when EMPTYBUFFER=>

TEXT_IO.PUTLINE ("An attempt was made to
read data from an empty
buffer");

TERMINATE_-PROTOTYPE;

47

% ',,,'v.. , ,'. ,,.... , .,-,,%_ .,,.. -.-, .,, ..,.., ,,._- ,, ,,,..,, -. -,, ., ,, ..- ,,, ,, ,, -, .. .':9, ,, ," ,' : ". % .,. .' ,"



end;

exception I
when OVER-TIME= >

TEXTIO. PUT_LINE ("A PSDL operator has
exceeded maximum
execution time");

TERMINATE_PROTOTYPE;

end;

exception
when PSDLEXCEPTION=>

TEXTIO. PUTLINE ("An undefined PSDL
exception
has occurred");

TERNINATE-PROTOTYPE;

end;

end DYNAHICSCHEDULER; as

4'-

a.,

- %: od i .- ' i -"i - • I i i i | - I l • a



I

LIST OF REFERENCES

1. Luqi, Rapid Prototypingfir Large Scftware System Design, Ph.d Thesis, University

of Minnesota, Duluth, MN, May 1986.

2. Luqi, and Ketabchi, M., A Computer Aided Prototyping System, Technical Report

NPS52-87-01 ', Naval Postgraduate School, Monterey, CA, April 1987.

3. Luqi, and Ketabchi, M., "A Computer Aided Prototyping System", IEEE Software,

IEEE Computer Society Press, Washington, D.C., 66-72, March 1988.

4. Luqi, Berzins, V., Yeh, R., .4 Proiotyping Language for Real-Time Software, Tech-

nical Report NPS52-87-010, Naval Postgraduate School, Monterey, CA, April

1987.

5. Booch, G.,. Software Engineering with Ada, The Benjarnin:Cummings Publishing

Companyv, Inc., Menlo Park, CA, 1987.

6. .Moffitt, C. R.. A Language Translator For A Computer Aided Rapid Prototyping

System. M.S. Thesis, Naval Postgraduate School, Monterey, CA, March 198S.

7. 0' 1crn, J. T., A Conceptual Level Design For A Static Scheduler For Hard Real-

7me Systems, M.S. Thesis, Naval Postgraduate School, Monterey, CA. March

1988.

8. Janson, D. M., 4 Static Scheduler For The Computer lided Prototyping Systen:

A4n Implementation Guide, M.S. Thesis, Naval Postgraduate School, Monterey, CA, %

March 1988. a,.

p,

9. Davari, S. and Dhall, S. K., "An On Line Algorithm for Real-Time Tasks Allo-
cation'. IEEE Real-Time Systems: l'roceedinigs oj the Syniposium in New Orleans.

Lousiana. December 2-4, 19,56, IEEE Computer Society Press. Washington, D.C., S

194-199, 1987.

49



BC

10

10. Jensen, E. D., Locke, C. D., Tokuda, If., "A Time-Driven Scheduling Model for

Real-Time Operating Systems", IEEE Real-Trime Systems. Proceedings of the Sym-

posium in San Diego, California, December 3-6, 19035, IEEE Computer Society

Press. Washington, D.C., 112-122, 1986.

11. Mok, A. K., "The Decomposition of Real-Time System Requirements into Process

Models", IEEE Real-Time Systems: Proceedings of the Symposium in Austin, Texas,

December 4-6, 1984, IEEE Computer Society Press. Washington, D.C., 125-133,

1985.

12. Mok, A. K., "The Design of Real-Time Progranmming Systems Based on Process
Models", IEEE Real-Time Systems: Proceedings of the Symposium in lustin, Texas,

December 4-6, 1984, IEEE Computer Socicty Press. Washington, D.C., 5-17, 1985.

13. Mok, A. K., and Sutanthavibul, S., "Modeling and Scheduling of Dataflow Real-

Time Systems", IEEE Real-Time Systems. Proceedings of the Symposium in San

Diego, California, December 3-6, 1985, IEEE Computer Society Press. %.

Washington, D.C., 178-187, 1986.

14. Sha, L., Lehoczky, J. P., Rajkunmar, R., "Solutions for Some Practical Problems in
Prioritized Preemptive Scheduling", IEEE Real-Time Systems: Proceedings of the 

Symposium in New Orleans, Lousiana, December 2-4, 1986, IEEE Computer Socictx

Press. Washington, D.C., 181-191, 1987.

15. Cheng, S., Stankovic, J. A., Ramamritham, K., Dynamic "Scheduling of Groups

of Tasks with Precedence Constraints in Distributed I lard Real-Time Systems",

IEEE Real-Time Systems. Proceedings oi' the Symposium in New Orleans,

Louisiana, December 2-4, 1985, IEEE Computer Society Press. Washington, D.C.,

166-174, 1987.

16. Chang, 11., and Livnv, M., "Distributed Scheduling under Deadline Constraints:

Comparison of Sender-initiated and Receiver-initiated Approaches". IEEE Real- -

Time Systems: Proceedings of the Symposium in New Orleans, Louisiana, December

2-4, 1986, IEEE Computer Society Press. Washington, D.C., 175-180, 1987.

50

'.5



17. Bray, G., and Pokrass, D., Understanding Ada--,4 Software Engineering Alpproach,

John Wiley and Sons, Inc., New York, NY, 1985. ,S

18. Luqi, "Execution of Real-Time Prototypes", ACM First International Workshop oil

Computer Aided Software Engineering, Cambridge, MA, 870-884, May 1987.

19. Luqi, Execution of Real-Time Prototypes, Technical Report NPS52-S7-012, Naval

Postgraduate School, Monterey, CA, April 1987.

20. Defense Communications Agency, Defense Switched Network, The Defense Com-

munications Agency, Washington, D.C., 1987.

511

'p

'p

'5



INITIAL DISTRIBUTION LIST
No. Copies

1. Defense Technical Information Center 2'
Cameron Station
Alexandria, VA 22304-6 145

2. Library, Code 0142 2
Naval Postgraduate School
Mvonterev, CA 93943-5002.

3. Office of the Chief of Naval Operations I
Code OP-941
Washington, DC 20,350

4. Commiander. Naval 'ielecommunications Command I
Naval Telecommunications Command Headquarters
4401 Massachusetts Avenue N. W.
Washington, DC 20350

5. Naval Trelecommunications System Integration Centcr 1
Naval Commuunications U nit Washing-ton

a Washington, DC 2'0397-5340

6. Ada Joint Pros-ram OfficeI
OUSDRE( R&A)
Thle Pentagzon
Washinigton. DC 20301

7. Commnander, Naval Data Automation ConunmandI
Washlington Navyv Yard 1
Washington, D.C. 20374-1662

S. Chief of Naval ResearchI
Office of the Chief of Naval Research
Atten. CDR. Michiael Geli Code 1224
A\rlington, VA 22217-5000

9. Professor LLQI. Code 52L-Q I
%Naval Postgraduate School
Monterey, CAY 93943

10. LCDR Barry A. Frew, USN, Code 54FV 1
Naval Postgraduate School
Monterey, CA 93943

It. Def'ense Con-munications Agency 3
Attn: LT Susan L. Eaton. Code B531I
Washington, DC 20303

52 %.

L'



12. LT Charlie R. Moffitt, USN
Department [lead Class ,4,104
SWOSCOLOM, Bldg. 446
Newport, RI 02S41-5012

13. Office of the Chief of Naval Operations
Code OP-945
Washington, DC 20350

14. Professor D. C. Boger, Code 54BO
Naval Postgraduate School
Monterey, CA 93943

53,

'6'

, 53 -



-- rONU

INZ


